
International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 1457
ISSN 2229-5518

 IJSER © 2015
http://www.ijser.org

Hierarchical state diagram and the transition to
synthesis of telecommunications protocol

automaton

Osama Ahmad Salim Safarini

Computer Engineering Department
 University of Tabuk,

 Tabuk, KSA
osafarini@ut.edu.sa

usama.safarini@gmail.com

Abstract— this article describes the approach to the organization computing in the telecommunications machine called serialization. It pro-
vides for a hierarchical DST partially formalized based automaton telecommunication specifications. Hierarchical DST described limited set of
transitions allowable species-specific telecommunication systems. Implicit transitions and states are determined at compile time for DST im-
plementation in the target system.
On the basis of this approach we created a language specification of hierarchical DST, designed for quickly and efficiently create implementa-
tions of telecommunication automaton in target systems for various purposes.

Index Terms— DST - Diagrams of states and transitions

——————————  ——————————

 INTRODUCTION

Currently, there are large-scale development telecommunication systems,
caused by the expansion of the spectrum communication services pro-
vided by a wide class of consumers. New services on the part of com-
munication systems based on the new telecommunication protocols. The
development of such protocols is an expensive technical task automation
which still has no generally accepted solution, in including the final
stage of development − implementation of the protocol in the target tele-
communication system.

The main difficulties automating the process of implementation tele-
communications protocol in the target system are related, primarily to
two aspects:

1. lack of complete specifications entire protocol in a formal lan-

guage (although there are rare exceptions);

2. Parallel computing.
The first aspect is related to the fact that usually a telecommunica-
tion protocol is described as a set of formally specified fragments
and informal description of their interaction. This feature of de-
scription leads to that implementation of the protocol in the target
runtime system is made by the developer of telecommunication sys-
tems and is not subject to formalization.

In other words, the transition from partially formalized description of the
telecommunication protocol automaton to its software implementation is
carried out in most using heuristic methods.
Automating the generation of the resulting code requires a completely
presence of formalized description of the protocol automaton at a high
level language. The absence of a fully formalized description of the pro-
tocol automaton causes, in the implementation, that arise of implicit
state and transitions to be processed in the resulting system. Synthesis
algorithm protocol automaton shall include monitoring of implicit states

and transitions, and preferably automated redefine them.
The second complex set of tasks associated with the organization of
parallel computing, traditional and goes back to the theory of finite au-
tomaton. The logical part of the telecommunication protocol traditionally
described using state diagrams and transitions. These diagrams are wide-
ly used for the synthesis of finite automaton based on combinational
circuits with memory elements. However, for the past tens of years of
implementation telecommunication protocol automaton for the most part
uses a software platform based on microcomputers. The transition from
circuit implementations to software creates a number of difficulties asso-
ciated with the provision of parallel computing. Usually this problem is
solved by software emulation of parallel computing combinational cir-
cuit with varying degrees of effectiveness. In this paper we propose an
alternative approach, which consists in organizing sequential signal pro-
cessing (serialization computing).

1. Diagrams of states and transitions
Diagrams of states and transitions (DST) are often used to visualize fi-
nite automaton. In literature DST often identified with the finite automa-
ton, that is not quite true [1-5]. Broadly, a finite automaton is any digital
device, whether combinational logic scheme or program-controlled
computer. Accordingly, under DST should understand certain visual
form of representation of a class of algorithms.
Very close to the DST are the graphical flowcharts of algorithms.
Flowcharts are commonly used to describe software algorithms, while
DST often used for synthesis electronic circuits. Nevertheless, both these
graphic presentations of the algorithms have much in common, and often
are interchangeable.
Not all algorithms and devices are described using DST and yet the
scope of the DST is very wide. To algorithms traditionally described
using DST include:

1. electronic logic circuits of moderate complexity;
2. protocol automaton;

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 1458
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

3. control algorithms for technological processes.
The latter can be attributed to software intelligent devices including ma-
chines and household appliances.
Note that all of these classes of algorithms combine the necessity of
processing multiple external signals that occur regardless of the current
state of the algorithm. Often these signals are called asynchronous sig-
nals, or real time signals. It can be assumed that the use of DST in these
areas due to the peculiar features of the structural decomposition of
DST, - namely, the ability to partitioning of the system by groups per-
ceived external signals, as well as by groups of states receiving these
signals.

Such a method of decomposition suggests the possibility of determining
a plurality of subsystems that operate practically independently. These
subsystems are executed in parallel branches of the general algorithm, or
sub processes. In this case, each individual sub-system may be repre-
sented by a separate procedural program; however, the whole system
requires the use of any parallel programming tools.
The finite state automaton may be implemented in hardware (such as
electronic circuitry, or any other physical device) or as a computer pro-
gram. The essential difference of these implementations is the use in the
second case unified hardware platform computers, versus specificity of
the electronic circuit. In other words, the software implementation of the
algorithm makes it possible to perform various algorithms on the same
hardware platform or one and the same algorithm - in various hardware
devices, while the hardware implementation tougher associated with a
specific algorithm.
Usually, the development of algorithms for hardware and software im-
plementations is performed by different means. However recently, in
practice there are problems increasingly replacing hardware implementa-
tion of the algorithm to its software equivalent and vice versa, especially
in the development stage of the algorithm. Modern hardware implemen-
tation of algorithms for the most part provide for software simulation of
hardware.
Modeling can held at different levels of detail. The most upper ("logi-
cal") levels of simulation are close to the software implementation of the
algorithm. Accordingly, modeling tools of hardware systems are very
closely related to the Software implementation of algorithms. The most
significant difference between software implementations of the algo-
rithm from the hardware is the technology of processing asynchronous
signals.
For a hardware implementation of the algorithm each input signal gener-
ally corresponds to a separate input line that contains certain circuit ele-
ments that operate independently of the rest of the circuit. Therefore, for
this type of implementation the separate structural part of the device
operates in parallel and independently (asynchronously) from each other.
Interaction between the parts of the device are logically does not differ
from their interaction with the outside world.
Software implementation of the algorithm involves the execution of the
program on the von Neumann machine. Von Neumann machine in turn,
supposes consecutive execution of predefined instructions, otherwise
referred to as procedural programs. Procedural program can receive data
from the outside only at predetermined locations, typically - at the be-
ginning of program execution.
Thus, the software implementation of the algorithm, unlike the hardware
can not contain completely independent functional parts:
All components of the software algorithm will inevitably be synchro-
nized with each other that inevitably reflected in the processing algo-
rithm of asynchronous signals.
The need to handle asynchronous signals in sequence (procedural) pro-
gram - serialization results to the creation of parallel branches of the
algorithm: asynchronous signal should be interpreted independently of
the state of the main program, and then correctly transmitted to the main
program, in other words, "synchronized" or delayed until a certain point
of execution, in which the main program will be ready to accept new
data.

Thus, support for asynchronous signals causes to life concepts such as
real-time signals, interruption, parallel execution, the division of time,
preemptive multitasking, synchronization, blocking, atomic operation,
etc... .

2. Hierarchy
The degree of complexity of modern protocol automaton in particular
used in wireless telecommunication systems has been steadily increas-
ing. For the design of complex systems is a necessary condition of the
possibility of decomposition into simpler parts and the possibility of
independent development of independent parts.
Partitioning systems into simpler parts are often called hierarchical struc-
tural decomposition of the project. This implies that at every level of
system representation the developer has to deal with a number of inde-
pendent entities manageable lower levels, the so-called primitives, each
of which in turn may be regarded as an independent subsystem of lower
level primitives.
Note that when the decomposition of the protocol automaton, held at the
stage of development of the telecommunication protocol, there is a prob-
lem appearance of implicit transitions. This is due to the fact that the
formal description of the fragments of an automaton interaction between
the fragments is not formalized. We explain this situation as an example.
One of the fragments of an automaton telecommunications protocol
produces the connection. This starts the timer, which is tasked with
tracking failure physical signal. In the case of a signal from the timer
transition is made to re-establish the connection. The following fragment
of the protocol automaton (at a higher level) provides data exchange, and
it does not provide signal processing of the above timer, since the inter-
action of the fragments is not formally specified. However, the appear-
ance of the given signal protocol automaton fragment that is responsible
for the transfer of data must be completed correctly and to transmit con-
trol in a fragment of connection establishment. Thus, there is the appear-
ance of an implicit transition is not directly described in the formal spec-
ification of the protocol automaton, but implied in the informal part of
the description.
The objective of the software code is generation of code protocol autom-
aton in the target language and tracking such implicit transitions and
their inclusion in the general scheme of the transitions of the protocol
automaton. To ensure traceability of such transitions in the language of
the description of the protocol automaton shall be provided special
means to set the rules of interaction between the fragments of the autom-
aton.
We propose to describe the protocol automaton introduce the concept of
hierarchy.
To do this, we introduce the concept level fragment automaton in the
overall structure of the automaton. For each level, all of the signals are
described, which can be obtained at this level, furthermore, are described
transition rules (functions) from level to level. All protocol automaton is
represented as a hierarchy (possibly branching) these fragments.
Target code generation system must keep track of all a plurality of input
signals, regardless of the level at which the signal is received. And in the
case where the signal causes automaton transition to another level of
hierarchy correctly implement rules of transition throughout the chain.
In the case of such a structure in the above example ambiguity does not
arise with the transition of the signal timer. Upon receipt of this signal in
the fragment, that is responsible for the transmission of data, will be
caused by the transition rule that provides the transition to the lower
layer. This function correctly completes the lower layer of the data
transmission algorithm, and then transfers control to fragment of estab-
lishing a connection. If the transition is carried out through several lev-
els of hierarchy, rules for the transition between the levels will be called
consistently for all intermediate levels that will correctly complete all
parts of protocol automaton.
There is a similar situation with the transition to a higher level. Transi-
tion rule performs a necessary component initialization and start the next
fragment of the protocol automaton.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 1459
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

Language for describing the protocol automaton that provides the ability
to set the level of the hierarchy of a fragment of the automaton, as well
as the rules of transition between levels allows you to fully formalize the
specification of the protocol automaton that will provide the ability to
automate the translation into the language implementation.

3. Hierarchical Language DST

Existing formal description languages DST have significant limitations
in the applicability, related to the specific requirements of the runtime,
cumbersome and inconvenient text description DST, and structuring
difficulties. Procedural languages are not very useful for the implementa-
tion of the DST. The main obstacle to the creation of an adequate Lan-
guage DST is a contradiction between the parallel (or asynchronous)
nature of DST and consistent course of execution programs written in
procedural languages. In other words, the problem of software and tradi-
tional consistent implementation has not yet received a decent resolution.
In this paper we propose to create a subset of the language based on the
existing description languages DST for efficient synthesis software tele-
communications protocol machines and control software for microcon-
trollers based on the hierarchical of language constructs. Such a lan-
guage should provide translation of hierarchical DST into procedural
program suitable for sequential execution.
The initial data for this should be a description of DST algorithm in the
form of a compact text form. Graphic form DST can be linked to the text
using pragmas. It is of interest the automatic synthesis of a graphical
representation of the text, and vice versa.
Hierarchical Language DST must be meta-language that combines three
specialized languages:

1. procedural language for creating procedural blocks, mainly
language C;

2. data description language (to create a protocol automata,
where the protocol data units can be specified in a machine-
independent format, such as ASN.1 or TLV);

3. Actual language DST, unifying and structuring procedural
blocks written in a procedural language.

Syntactic language DST must be clearly separated from the procedural
language. It should allow the layout separately compiled parts of a pro-
gram using a minimum amount of external common definitions. In ad-
dition, the language must allow representing the algorithm on several
levels with the necessary level of detail for each of the levels.
In other words, one state of the system at some level if necessary
should be independent subsystem with a set of their states.
We illustrate this with two examples. In Many protocol automata a
number of protocol procedures single level objects is described as a se-
quence of exchange certain messages. At the same time, the transmis-
sion and reception of messages are themselves complex algorithmic
tasks. Therefore, at different levels of representation needed to see the
transmission of the message or as an atomic action, or as a deployed
algorithm. Another example: the device in interactive input state of the
input data must be some way to respond when buttons are pressed. It is
obvious that at the same level of representation is the "input state"
should be displayed simple state, but on the other – as independent al-
gorithm with input and correction of data.

Conclusion
Thus, consider a method of serialization computing providing for the
creation of a hierarchical diagram of states and transitions telecommu-
nication automaton. Hierarchical DST described by a set of transitions
allowable kind-specific for telecommunication systems.
Implicit transitions and states are determined by the DST compiler for
implementation in a specific target system.
To describe hierarchical DST we proposed language specifications for
fast and efficient creating implementations of telecommunication au-
tomaton in the target systems for various purposes.

References
1. Specification and Description Language (SDL). Recommendation

Z.100. - Moscow: International Telecommunication Union, 1992.
2. Armstrong J.R. Simulation of digital systems in the language

VHDL. - Moscow: Mir, 1992.
3. Zubin V.E. PLC programming: languages for Simulation Electron-

ic Computer 61131-3 and possible alternatives // Industrial Auto-
mated Control Systems and controllers. -2005. - №11. - pp. 31-35.

4. The nesC language: A holistic approach to networked embedded
systems. 2003. http://nescc.sourceforge.net/papers/nesc-pldi-
2003.pdf

5. Paul Jay Lucas. An object-oriented language system for imple-
menting concurrent, hierarchical, finite state machines. MS Thesis.
— University of Illinois, 1993.

IJSER

http://www.ijser.org/
http://nescc.sourceforge.net/papers/nesc-pldi-2003.pdf
http://nescc.sourceforge.net/papers/nesc-pldi-2003.pdf

	Introduction

